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ABSTRACT

The integration of machine learning (ML) in veterinary 
epidemiology offers transformative potential for data analysis 
and disease management, a significant shift from traditional 
statistical methods. This review explores the burgeoning role 
of ML, emphasizing its capacity to handle complex, high-
dimensional data and uncover nonlinear relationships, which 
are pivotal in epidemiology. Key ML methodologies, including 
supervised, unsupervised, and reinforcement learning, provide 
robust frameworks for predictive modeling, pattern recognition, 
and decision-making processes. Applications in veterinary 
medicine are already evident in diagnostic imaging and animal 
behavior monitoring, showcasing ML’s ability to enhance 
diagnostic accuracy and welfare monitoring.

Despite these advancements, the field faces challenges such 
as imbalanced datasets, data quality issues, and the need 
for interdisciplinary collaboration. Strategies like Synthetic 
Minority Over-sampling Technique and ensemble methods help 
address class imbalance, while robust preprocessing techniques 
mitigate data noise. Future advancements in natural language 
processing and reinforced learning promise further integration, 
optimizing disease surveillance and intervention strategies.

The review highlights the transformative potential of ML in 
veterinary epidemiology, advocating for continued research 
and collaboration to overcome existing hurdles. By leveraging 
ML’s capabilities, veterinary professionals can improve disease 
prediction, develop targeted preventive programs, and enhance 
overall animal health and food security, marking a significant 
advancement in veterinary science.
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INTRODUCTION

Historically, data analysis and inferences made 
by applying analytical and statistical methods 
were epidemiological research’s predominant 
roles and outcomes. However, the fast and 
rapid development of data science and artificial 
intelligence (AI) tools seen in the past couple 
of years, mainly in the domain of integration of 
powerful machine analysis of big data aggregation, 
opened a new window of opportunities for all 
biomedical disciplines including epidemiology. 
Although there has been increasing evidence of 
the use of machine learning (ML) as one of the 
growing tools under the AI umbrella in veterinary 
medicine, significant clinical and research potential 
and opportunities involving ML remain largely 
untapped, putting veterinary science behind other 
biomedical research fields. 

This review does not attempt to offer an 
exhaustive elaboration of examples and progress 
in the integration of these new tools in the 
analysis of data collected through traditional 
surveillance approaches. Instead, it offers a 
glimpse into basic terms, principles, and current 
ML practices and their potential use within 
epidemiology and broader scope of veterinary 
medicine issues. Several comprehensive review 
articles delve deeper into AI and ML strategies 
in human medicine and data science. However, 
we recognised the need to explore the current 
status of integration of AI methods in the analysis 
of biological data in the animal domain, which 
might be very complex considering relations in 
the traditional epidemiological triangle of agent – 
host – environment. We were aware of the fact that 
certain levels of scepticism and ignorance exist yet 
in the scientific and professional community related 
to fast and progressive game-changing process we 
face today with AI and ML. This review is aimed at 
unpacking potential of ML methods in integration 
with veterinary medicine, and more specifically, 
with its data analysis discipline – epidemiology. 
We believe this can serve to research community 
in better understanding of the ongoing and future 
processes by exploring the transformative potential 

of ML in veterinary epidemiology. To prove this, 
the aim of this manuscript was to elaborate and 
highlight the advantages, challenges, and prospects 
of integrating advanced ML techniques into this 
field, offering a basic comparison with the most 
common traditional statistical methods.

Statistics and Machine Learning in the Domain 
of Epidemiological Researches

Frequentist inference is the predominant tool in 
epidemiological research. These methods, which 
might be complex and hardly understandable 
for non-statisticians, are grounded in hypothesis 
testing and probability calculations to support 
or refuse research thesis (Rothman et al., 2008). 
Common practices include basic statistical tests 
and multivariable regression models that are 
pivotal in identifying associations or treatment 
effects between variables. In epidemiology, 
traditional regression models serve dual functions: 
they are utilized either to predict a dependent 
variable from multiple independent variables 
(predictive models) or to measure the effect or 
association of specific independent variables on a 
dependent variable (explanatory models). These 
modeling strategies provide essential insights for 
both researchers and decision makers, and rely on 
several data assumptions such as linearity, absence 
of multicollinearity, and proportional risks/odds/
hazards over time, familiar to epidemiologists 
(Vittinghoff et al., 2012). Data challenges 
stemming from inconsistencies, imbalances, or 
weak connections can impede model performance 
(Molenberghs and Kenward, 2007). To address 
these challenges, incorporating advanced data 
analysis has significant advantages, allowing the 
model to autonomously learn from the data’s 
structure and features. This approach prioritizes 
predictive capabilities over explanatory or causal 
inference, showing potential for enhancing disease 
management strategies. ML is particularly suited 
for this role, offering distinct advantages in 
predictive accuracy (James et al., 2013).

ML is a subset of AI dedicated to developing 
algorithms that enable computers to glean 
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insights and make predictions or decisions from 
data. While ML and statistics are interconnected 
disciplines centered around data analysis, they 
diverge significantly in their methodologies, 
objectives, and focal points. ML aims to develop 
algorithms capable of identifying patterns and 
making informed predictions or decisions, 
emphasizing predictive precision and the ability 
to generalize. This contrasts with conventional 
programming paradigms, where tasks are defined 
by explicit instructions, and ML algorithms 
autonomously discern and refine patterns from 
data, adapting their performance iteratively to 
diverse scenarios (Hastie et al., 2009). Conversely, 
statistics is focused on the comprehension and 
interpretation of underlying data structures and 
relationships, primarily for inference, hypothesis 
testing, and parameter estimation (Casella and 
Berger, 2002). ML algorithms are designed 
to optimize performance across specific tasks 
such as classification, regression, clustering, 
or reinforcement learning, whereas statistical 
methodologies aim to draw population inferences 
from sample data and estimate probability 
distribution parameters. ML techniques 
emphasize algorithmic intricacy and scalability, 
facilitating the handling of diverse data types 
through feature engineering and preprocessing 
mechanisms, contrasting with statistics, which 
predominantly deals with structured datasets, 
drawing upon specific distributional assumptions, 
and emphasizing theoretical rigor and interpretive 
insights (Bishop, 2006).

Over the past decade, ML techniques have gathered 
considerable attention within biomedical research, 
although their integration into population health 
remains somewhat limited. ML methods provide 
a flexible alternative to traditional statistical 
approaches by handling complex, high-dimensional 
data and capturing nonlinear relationships prevalent 
in epidemiological studies. Unlike conventional 
regression models, ML models can adaptively 
learn from the data, proving invaluable when 
data structures are intricate or unknown. Despite 
their advantages, ML models also present several 
challenges. They often require large datasets to 

perform effectively, which may not always be 
available in epidemiological research, especially 
in the application of active data collection systems/
surveillance with limited resources. Moreover, the 
interpretability of ML models can be problematic. 
Unlike traditional statistical methods that offer 
clear and interpretable coefficients, ML models 
can be perceived as “black boxes” that provide 
limited insights into the underlying mechanisms 
driving the predictions. This lack of transparency 
can hinder their acceptance in epidemiology, 
where understanding causality and mechanisms is 
crucial.

Nevertheless, the advantages of ML over traditional 
statistical methods in epidemiological research are 
substantial. ML excels in processing large volumes 
of data swiftly, a critical capability in a field where 
datasets can be extensive and heterogeneous. 
By automating feature extraction and model 
selection, ML reduces the manual effort and time 
typically required for complex data preprocessing 
and model building. This efficiency not only 
accelerates the pace of research but also conserves 
valuable resources, allowing epidemiologists to 
focus more on interpreting results and translating 
findings into actionable insights. Furthermore, 
ML’s ability to handle nonlinear relationships and 
complex interactions among variables enhances 
its predictive accuracy compared to traditional 
regression models, offering promising avenues 
for improving disease management strategies and 
public health interventions. These advantages 
underscore ML’s transformative potential in 
advancing epidemiological research beyond the 
constraints of traditional statistical methodologies.



V e t e r i n a r i a Vo l .  7 3  •  I s s u e  2  •  2 0 2 496

Exploring the Triad of ML Methodologies

While exhibiting similarities, ML introduces 
terminology distinct from that commonly 
encountered in the realm of statistics. A knowledge 

of these unique terms is imperative for the effective 
utilization and interpretation of ML algorithms 
and models. As presented by Wiemken and Kelley 
(2019), the terms are explained in Table 1.

Table 1 Comparison of terminology between biostatistics/epidemiology and machine learning

Term in biostatistics and 
epidemiology

Term in Machine 
Learning

Explanation

Dependent variable Label/class Main factor of interest in a study

Independent variable Feature Factors that are thought to influence the 
dependent variable

Contingency table Confusion matrix
Displays the counts of true positive, true 
negative, false positive, and false negative 
outcomes of a classification algorithm 

Number of variables Dimensions

Refers to the number of measurable 
properties or characteristics of each data 
point in a dataset (e.g. age, weight, breed, 
and vaccination status of an animal)

Sensitivity Recall

Measures the proportion of true positives 
(animals correctly identified as having the 
disease) among all animals that actually 
have the disease

Positive predictive value Precision Measures the proportion of true positives 
among all positive test results

Outcome group with the highest 
frequency Majority class

Refers to the most prevalent category 
within the dataset (e.g. the most common 
diagnostic test result observed in a 
population of animals)

Outcome group with the lowest 
frequency Minority class

Refers to the least prevalent category within 
the dataset (e.g. rare condition or diseases 
that occur infrequently observed in a 
population of animals)

Proportion of cases in each category 
of the outcome variable (when 
outcome is categorical)

Class balance Distribution of different categories or 
classes within the outcome variable. 
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ML encompasses three primary methodologies: 
supervised learning, unsupervised learning, and 
reinforcement learning. Each of these approaches 
has distinct methods for handling data and is 
tailored to achieve different objectives, yet they 

can be integrated to address complex datasets 
comprehensively. The compiled brief explanations 
and prominent examples of essential ML methods 
obtained from relevant scientific literature are 
provided in Table 2. 

Table 2 Overview of supervised, unsupervised, and reinforcement learning techniques with corresponding 
algorithms and references.

Methodology Explanation Example algorithms References

Supervised 
Learning

Involves training a model on a 
labeled dataset, where the input 
data is paired with the correct 
output. The goal is for the model 
to learn a mapping from inputs 
to outputs, allowing it to make 
predictions on new, unseen data. 

Linear Regression, 
Support Vector 
Machines, Neural 
Networks, Random 
Forests

Goodfellow et al. 
(2016), Kotsiantis et 
al. (2007), Bishop 
(2006)

Unsupervised 
Learning

Involves training a model 
on data that has no labels or 
predefined outcomes. The 
goal is to discover underlying 
patterns or structures within the 
data.

K-means Clustering, 
Hierarchical 
Clustering, Principal 
Component Analysis, 
t-Distributed 
Stochastic Neighbor 
Embedding

Murphy (2012), Jain 
(2010), Hastie et al. 
(2009)

Reinforcement 
Learning

Involves training a model 
through interactions with an 
environment, where the model 
receives feedback in the form of 
rewards or penalties. The goal is 
to learn a policy that maximizes 
cumulative rewards over time. 

Q-Learning, Deep 
Q-Networks, Policy 
Gradient Methods, 
Actor-Critic Methods

Sutton and Barto 
(2018), Mnih et al. 
(2015), Kaelbling et 
al. (1996)
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Supervised learning is characterized by its use of 
labeled datasets, where each input is associated 
with a specific output. This method aims to learn 
the mapping from inputs to outputs, enabling 
the model to make accurate predictions on new, 
unseen data. Supervised learning is particularly 
effective for tasks that involve classification, 
where the objective is to categorize inputs into 
predefined classes, and regression, which focuses 
on predicting continuous outcomes. This approach 
is underpinned by a variety of algorithms, such 
as linear and logistic regression, support vector 
machines, neural networks, and random forests, 
each offering unique advantages in different 
scenarios (Bishop, 2006; Kotsiantis et al., 2007; 
Goodfellow et al., 2016). One of the earliest 
applications of supervised learning in the medical 
field was for the diagnosis of diseases. In the 1960s, 
researchers began using linear regression models 
to predict the presence of certain diseases based on 
patient data (Bishop, 2006). The development of 
neural networks in the 1980s further revolutionized 
medical diagnostics, enabling more accurate and 
complex pattern recognition (Albahra et al., 2023).

In epidemiology, supervised learning has been 
used to predict disease outbreaks and understand 
the spread of infectious diseases. One of the 
pioneering studies in this field used logistic 
regression to model the risk factors associated 
with the spread of malaria in populations (Kuang 
et al., 2009). 

In contrast, unsupervised learning deals with 
data that lack labeled outputs, aiming to uncover 
hidden patterns, structures, or relationships 
within the data. This approach is instrumental 
for exploratory data analysis and is essential 
when the goal is to identify inherent groupings or 
reduce data dimensionality. Common applications 
include clustering, where similar data points 
are grouped together; dimensionality reduction, 
which simplifies data while retaining essential 
information; and anomaly detection, which 
identifies outliers within the data. Key algorithms 
in unsupervised learning include k-means 
clustering, hierarchical clustering, principal 
component analysis (PCA), and t-distributed 

stochastic neighbor embedding (t-SNE) (Hastie et 
al., 2009; Jain, 2010; Murphy, 2012). Unsupervised 
learning was first applied in the medical field to 
cluster patient data into meaningful groups. In the 
1970s, clustering algorithms were used to group 
patients based on symptoms and laboratory results, 
aiding in the identification of disease subtypes 
(Jain, 2010). These early applications helped in 
understanding the heterogeneity of diseases and 
improving personalized medicine approaches. 
In epidemiology, unsupervised learning was first 
used to identify patterns in disease incidence data. 
For example, clustering algorithms were applied to 
group geographic regions based on the similarity 
of disease outbreak patterns, which helped in 
identifying hotspots and potential sources of 
outbreaks (De Silva, 2007). This approach has 
been essential in monitoring and controlling 
infectious diseases.

Reinforcement learning (RL) stands apart by 
focusing on learning through interaction with 
an environment. In RL, an agent learns to make 
decisions by performing actions and receiving 
feedback in the form of rewards or penalties. The 
primary goal is to develop a policy that maximizes 
cumulative rewards over time. This approach 
is highly applicable to scenarios that require 
sequential decision-making and adaptability, 
such as robotics, game playing, and autonomous 
systems. Notable algorithms in reinforcement 
learning include Q-learning, which focuses on 
learning the value of action-reward pairs; deep 
Q-networks, which utilize neural networks to 
approximate Q-values; policy gradient methods, 
which optimize the policy directly; and actor-critic 
methods, which combine value and policy learning 
to enhance performance (Kaelbling et al., 1996; 
Mnih et al., 2015; Sutton and Barto, 2018). RL has 
more recently been applied in the medical field, 
particularly in personalized treatment planning. 
In the 2009, researchers used RL algorithms to 
develop adaptive treatment strategies for blood 
glucose control in diabetic patients, optimizing 
the timing and dosage of interventions based 
on patient responses (Yasini et al., 2009). In 
epidemiology, RL has been explored to optimize 
public health interventions. One of the most 
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important applications was in the development of 
strategies for vaccination campaigns, where the 
goal was to determine the most effective allocation 
of limited vaccine supplies to minimize disease 
spread (Wei et al., 2021; Lu et al., 2023; Rey et 
al., 2023), which effectiveness was evident during 
COVID-19 pandemic (Beigi et al., 2021; Hao et 
al., 2022). Unfortunately, in the field of veterinary 
epidemiology no studies explored and utilized 
potential of RL on disease control strategies.

These three approaches to ML-supervised, 
unsupervised, and reinforcement learning 
— provide robust frameworks for analyzing 
and interpreting complex data. By leveraging 
the strengths of each method, researchers 
and practitioners can develop more effective 
and accurate models tailored to a wide range 
of applications, from predictive analytics to 
automated decision-making systems.

Use of ML in Veterinary Medicine

Significant applications of ML in veterinary 
medicine are already evident in diagnostic imaging, 
where ML algorithms, particularly deep learning 
models, have demonstrated considerable promises. 
These models analyze images from ultrasounds, 
MRIs, and X-rays to detect abnormalities such 
as tumors or fractures (Currie and Rohren, 2022; 
Tahghighi et al., 2023). In veterinary medicine, 
convolutional neural networks have been employed 
to diagnose conditions in pets and livestock with 
high accuracy, occasionally surpassing that of 
human experts (McEvoy, 2015). This application 
not only accelerates the diagnostic process but 
also enhances its accuracy, providing substantial 
support to veterinary professionals. Additionally, 
ML is utilized to monitor animal behavior and 
welfare. Sensors and cameras gather data on animal 
movements and behaviors, which ML algorithms 
analyze to detect signs of illness or stress. This 
application is particularly crucial in large-scale 
farming operations where manual monitoring is 
impractical. By providing continuous, automated 
monitoring, ML tools help ensure the well-being 
of large animal populations, highlighting unusual 
behaviors that might indicate health issues (Bidder 
et al., 2014).

ML emerged as a game-changing force in veterinary 
epidemiology, offering new tools to better 
understand zoonotic diseases spillover and enhance 
surveillance, detection response and recovery. The 
current applications of ML span a broad spectrum, 
from predictive modeling to pattern recognition, 
fundamentally altering how epidemiological data 
are analyzed and interpreted. Looking forward, 
ML is poised to further integrate into this field, 
addressing complex epidemiological challenges 
with increasingly sophisticated algorithms. At 
present, one of the primary applications of ML in 
veterinary epidemiology is in the development of 
predictive models. These models utilize historical 
data to forecast disease outbreaks, allowing for 
timely preventive measures. Supervised learning 
techniques, such as logistic regression and 
random forests, have been particularly effective in 
identifying the likelihood of disease occurrences 
based on various risk factors. For instance, models 
have been developed to enhance surveillance 
(Hepworth et al., 2012; Fountain-Jones et al., 
2019; Bollig et al., 2020; Hyde et al., 2020; Zhang 
et al., 2021), aid in decision-making (Romero et al., 
2020), and identify risk factors for animal diseases 
(Silva et al., 2019; Ghafoor and Sitkowska, 
2021). These capabilities are crucial for allocating 
resources effectively and mitigating potential 
outbreaks before they become widespread.

The primary obstacle to the increased utilization 
of ML in veterinary epidemiology is likely 
the frequent occurrence of imbalanced class 
distributions in the data, where one class is 
significantly underrepresented compared to others. 
As it is often the case, especially in countries 
with diversity of production systems and lack 
of population data, the sample size, although 
considered representative of the population, is not 
deemed large enough to produce robust predictive 
models for diseases. These obstructions are 
extremely discouraging for researchers tackling 
rare diseases and/or small populations in building 
adequate predictive models for diseases. However, 
in the initial phases of applied ML, Weiss (2004) 
highlighted the challenge of imbalanced datasets, 
which can be classified into two categories: 
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relative rarity (where imbalance occurs within a 
large sample size) and absolute rarity (where the 
sample size is small and imbalanced). In many 
practical examples, a problem that commonly 
occurs concerning imbalanced datasets is that the 
cost of misclassifying a minority class example is 
significantly higher than that of misclassifying a 
majority class example. Since the development of 
control measures in epidemiology heavily relies on 
the use of statistical data calculations to construct 
disease models, it is crucial to develop classifiers 
that minimize overall misclassification costs, 
as stated by Weiss et al. (2007). This approach 
typically improves performance on the minority 
class compared to treating all misclassification 
costs equally. It also prevents the classifier from 
always predicting the majority class in highly 
imbalanced scenarios.

Several strategies are effective for handling 
skewed class distributions with unequal 
misclassification costs (He and Garcia, 2009). 
The most straightforward approach involves using 
a learning algorithm that inherently accounts for 
these costs when constructing the classifier (Weiss 
et al., 2007). Another approach for addressing 
skewed data with varying misclassification 
costs is to use sampling techniques to modify 
the class distribution of the training data. Two 
primary sampling methods can be employed for 
this purpose: oversampling and undersampling 
(Shelke et al., 2017; Mohammed et al., 2020). 
Oversampling involves replicating existent or 
creating new synthetic minority-class examples 
(Zheng et al., 2015), whereas undersampling 
entails removing examples from the majority class 
(Gosain and Sardana, 2017), thus eliminating 
potential bias due to misclassification (He and 
Garcia, 2009; Mohammed et al., 2020).

Among the oversampling techniques, Synthetic 
Minority Oversampling Technique (SMOTE) 
stands out as a particularly influential method 
for addressing imbalanced datasets in veterinary 
epidemiology. Introduced by Chawla et al. (2002), 
SMOTE generates synthetic samples from the 
minority class instead of creating exact copies. 
This method involves selecting examples that are 

close in the feature space, drawing a line between 
the minority samples in the space and generating 
new samples along that line. This approach helps 
create a more generalizable decision boundary 
for the minority class, effectively enhancing the 
performance of ML models (Chawla et al., 2002).
In addition to SMOTE, advanced dimensionality 
reduction techniques are pivotal when dealing 
with high-dimensional data, which is typical in 
biological data relevant to veterinary epidemiology. 
Dimension reduction techniques like PCA and 
t-SNE are utilized to simplify the complexity of 
data while retaining its most significant features. 
PCA, for example, reduces the dimensionality 
of the data by transforming it into a new set of 
variables, which are linear combinations of the 
original variables and capture the maximum 
variance within the data (Jolliffe, 2002). t-SNE, 
on the other hand, is particularly well-suited for 
the visualization of high-dimensional datasets and 
can help identify clusters of similar data points, 
which is valuable for understanding the underlying 
structures of disease outbreaks (van der Maaten 
and Hinton, 2008). Another corrective method in 
the arsenal for tackling imbalanced datasets is the 
use of ensemble methods, such as Random Forests 
and Boosted Trees, which combine multiple weak 
classifiers to form a robust classifier. These methods 
can be particularly effective because they naturally 
handle imbalance by constructing multiple 
decision trees and aggregating their predictions, 
thereby providing a balanced perspective on the 
classes (Breiman, 2001; Schapire, 2003).

To implement these strategies effectively, 
it is essential for researchers in veterinary 
epidemiology to apply these techniques, but also 
rigorously validate their models. This includes 
cross-validation techniques and stratified sampling 
to ensure that the models are robust and perform 
well across different subsets of data (Kohavi, 
1995). Moreover, ongoing research into novel ML 
techniques that can address the specific challenges 
of imbalanced data in veterinary contexts is crucial. 
Additionally, the construction of successful ML 
models can be significantly hindered by various data 
quality issues, commonly referred to as “noise”. 

” 
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Noise in ML is defined as random or irrelevant 
data within a dataset that does not contribute to the 
pattern or structure the model is designed to learn 
(Gupta and Gupta, 2019). This can obscure the 
true relationships between features and the target 
variable, thereby complicating the model’s ability 
to generalize effectively to new, unseen data 
(Saseendran et al., 2019). One prevalent source of 
noise is measurement errors, which occur due to 
inaccuracies or inconsistencies in data collection 
methods or instruments used in field studies or 
clinical environments. These errors can include 
everything from error-prone measurement tools to 
biological variability in samples, which can skew 
data and mislead analytical models (Greenland 
et al., 2016). Label noise also poses a significant 
challenge, particularly when diagnostic criteria 
are subjective or when multiple evaluators are 
involved without sufficient calibration. Incorrect 
or inconsistent labeling of training data can 
lead to misclassifications and reduce the overall 
effectiveness of predictive modeling (Garcia et al., 
2015).

Furthermore, veterinary epidemiological datasets 
often include irrelevant features-data points that do 
not have a meaningful relationship with the target 
variable. This can happen due to the inclusion of 
extensive and diverse data sources, which may 
dilute the predictive power of the model (Van 
der Waal et al., 2017). Environmental factors 
introduce another layer of complexity: external 
conditions such as temperature or humidity at the 
time of sample collection can introduce variability 
that is not relevant to the study’s objectives, 
but can affect the data collected (Weatherhead 
et al., 1998). Lastly, the inherent randomness 
in the data generation process, which is not 
captured by the model, contributes to noise. This 
includes biological variability among subjects or 
uncontrolled environmental influences during data 
collection, adding further uncertainty to the data 
analysis process (Louppe, 2014). The presence 
of such noise in the dataset can lead to several 
complications such as overfitting, where the 
model erroneously learns to capture the noise as if 
it were a true signal, thereby harming the model’s 

performance on new data. It can also reduce the 
overall accuracy and increase the complexity of 
the model, resulting in higher computational costs 
and inefficient learning processes (Domingos, 
2012).

To mitigate these issues, it is crucial for researchers 
in veterinary epidemiology to employ robust data 
preprocessing techniques to clean and normalize 
data, utilize feature selection algorithms to reduce 
dimensionality and discard irrelevant features, and 
apply advanced ML techniques that are inherently 
more resistant to noise, such as ensemble methods 
or regularized regression models (Kumar and 
Minz, 2014). These strategies help ensure that the 
predictive models developed are both accurate and 
robust, capable of providing reliable insights for 
disease management and control.

Future of ML

Looking to the future, the integration of ML in 
veterinary epidemiology is expected to expand 
further with the advancement of technologies 
such as natural language processing (NLP) and 
reinforced learning (RL). NLP can be utilized to 
shift through vast amounts of unstructured data 
from veterinary records, social media, and literature 
to identify disease trends and outbreaks. This 
capability could be particularly transformative in 
managing zoonotic diseases, where early detection 
and rapid response are critical (Clark et al., 2020).

RL, on the other hand, offers potential for 
optimizing decision-making processes in 
epidemiology. For example, RL could be used to 
develop dynamic vaccination strategies, adjusting 
in real-time based on feedback from ongoing 
disease surveillance data. This approach could 
maximize the effectiveness of interventions by 
tailoring them to the specifics of an outbreak 
scenario, thereby minimizing the spread and 
impact of diseases (Libin et al., 2021).

Despite these advances, the application of ML in 
veterinary epidemiology is not without challenges. 
Issues such as data quality, privacy concerns, and 
the need for robust computational infrastructure 
pose significant hurdles. Additionally, there is a 
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UNAPREĐENJE VETERINARSKE EPIDEMIOLOGIJE INTEGRACIJOM MAŠINSKOG 
UČENJA: TRENUTNO STANJE I PERSPEKTIVE

SAŽETAK 

Integracija mašinskog učenja (MU) u veterinarsku epidemiologiju ima transformativni potencijal u 
polju analize podataka i menadžmenta, što predstavlja značajan zaokret u odnosu na tradicionalne 
statističke metode. U ovom Pregledu istražujemo rastuću ulogu MU sa naglaskom na njegov 
kapacitet u upravljanju složenim, višedimenzionalnim podacima i otkrivanju nelinearnih odnosa 
koji su od presudnog značaja u epidemiologiji. Ključne metodologije MU, uključujući supervised, 
unsupervised i reinforcement learning osiguravaju robustne okvire za kreiranje prediktivnih modela, 
obrasce prepoznavanja i procese donošenja odluka. Već se primjenjuju u veterinarskoj medicini u 
oblasti dijagnostičkog snimanja i monitoringu životinjskog ponašanja, pokazujući sposobnost MU 
da poveća dijagnostičku preciznost i ojača zdravstveni monitoring.
Uprkos ovakvom napredovanju, praktični izazovi uključuju neizbalansirane skupove podataka, 
probleme kvalitete podataka te potrebu za interdisciplinarnom suradnjom. Strategije poput Synthetic 
Minority Oversampling Technique i ansambl metode su od pomoći kod neuravnotežene distribucije 
klasa, dok robustne tehnike prethodne obrade ublažavaju  podatkovne šumove. Budući razvoj u 
obradi prirodnog jezika i pojačanog učenja obećava daljnju integraciju, optimiziranje praćenja 
bolesti i interventne strategije. 
Ovaj Pregled naglašava transformativni potencijal MU u veterinarskoj epidemiologiji promovirajući 
kontinuirano istraživanje i suradnju sa ciljem prevazilaženja postojećih problema. Iskorištavanjem 
mogućnosti MU, veterinari mogu unaprijediti predviđanje bolesti, razviti ciljane preventivne 
programe i u cjelosti unaprijediti zdravlje životinja i ispravnost hrane, dajući značajan doprinos 
razvoju veterinarske znanosti.

Ključne riječi: Kreiranje prediktivnih modela, praćenje bolesti, veterinarska medicina, vještačka 
inteligencija, zdravlje životinja
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