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INTRODUCTION

Antibiotic resistance has emerged as one of the most critical global health threats of the 21st century and is defined by
the World Health Organization as “one of the greatest threats to global public health, food security, and development”
(WHO, 2023). This problem arises from bacteria developing resistance to antibiotics, causing treatable infections to
become fatal. Various factors contribute to the rise of antibiotic resistance, including the excessive and inappropriate
use of antibiotics, inadequate infection control, and the challenges in developing new antibiotics (Ventola, 2015).
According to the World Health Organization (WHO), antimicrobial resistance (AMR) was responsible for an
estimated 1.27 million deaths in 2019, based on global statistical modelling across 204 countries (Murray et al.,
2022). These estimates include uncertainty intervals (95% UI 0.91-1.71 million deaths) and indicate that, if current
trends continue, the annual number of deaths could reach 10 million by 2050. Furthermore, according to World
Bank data, global GDP losses of up to 3.8% could occur by 2050 (World Bank, 2017). Addressing this serious threat
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requires a multifaceted approach, with strategies such
as promoting the rational use of antibiotics, developing
new antibiotics, strengthening global surveillance
systems, adopting the One Health approach, and
enhancing international cooperation being of paramount
importance (Ajulo and Awosile, 2024).

The rapid spread of antibiotic resistance and the
decreasing effectiveness of existing antibiotics have
made the development of new antibiotics an urgent
global health priority (WHO, 2023). However, the
development of new antibiotics is a long, costly, and
challenging process. Typically, the period from the
discovery of a new antibiotic to its market release
ranges from 10 to 15 years, with an average cost
of approximately 1.5 billion USD (Luepke et al.,
2017; Plackett, 2020). This lengthy process includes
basic research, preclinical studies, clinical trials, and
regulatory approval stages. Moreover, approximately
90% of drug candidates that enter Phase I-III clinical
trials ultimately fail to reach approval, largely due to
insufficient efficacy and unmanageable toxicity (Sun
et al., 2022). The complexity of the new antibiotic
development process, combined with its high cost and
low return on investment, has reduced the willingness of
pharmaceutical companies to invest in this field, leading
to a decline in new antibiotic discoveries (Plackett,
2020). Indeed, while the discovery of new antibiotic
classes peaked in the 1940s and 1950s, it has shown
a significant decline since the 1960s. The numerical
distribution of new antibiotic classes discovered
between 1900 and 2009 is shown in Figure 1.

The average annual revenue generated after the
market launch of a new antibiotic is approximately 46
million USD (Plackett, 2020). This figure is far from
covering the development costs and is considerably
lower compared to other types of drugs. In addition,
the use of new antibiotics is often restricted to prevent
the development of resistance, which further reduces
sales and profitability. To address this issue, strategies
such as promoting academia—industry collaborations,
developing new business models, and increasing public
funding have been proposed (Theuretzbacher et al.,
2020). New financing models, such as the market entry
reward, aim to reduce risk and encourage investment by
providing substantial rewards to successful antibiotic
developers (Ardal et al., 2020). Furthermore, global
initiatives such as the Global Antibiotic Research and
Development Partnership (CARB-X) and the Combating
Antibiotic-Resistant ~ Bacteria ~ Biopharmaceutical
Accelerator (GARDP) are working to accelerate the
discovery and development of new antibiotics (Simpkin
et al., 2017). Nevertheless, along with the development
of new antibiotics, the rational use of existing antibiotics
and the prevention of antimicrobial resistance are of
great importance (Salam et al., 2023).

Bioinformatics and machine learning methods hold
great promise in the fight against antibiotic resistance
and have become an important tool in the discovery and
development of new antibiotics. These technologies
analyze large datasets to rapidly and effectively identify
potential antibiotic candidates, offering significant time
and cost savings compared to traditional methods (Stokes
etal., 2020). Although the applications of bioinformatics

Figure 1 Historical
distribution of new
antibiotic class
discoveries (Stennett et
al., 2022)
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and machine learning to antibiotic research have been
discussed separately in the literature, an integrated
perspective that combines both computational fields and
their latest methodological advances remains lacking.
This narrative review synthesizes recent developments
in bioinformatics and machine learning applications for
antibiotic discovery. A comprehensive literature search
was conducted using PubMed, Web of Science, and
Google Scholar databases.

Bioinformatics Methods

Genomic and metagenomic analyses play a crucial
role in the discovery and identification of antibiotic-
producing microorganisms. These culture-independent
approaches are effective in revealing the genetic
potential of microorganisms that cannot be cultured
(Hover et al., 2018). By overcoming the limitations
of traditional culture-based methods, these techniques
enable the analysis of genome sequences
microbial communities in natural environments that
may contain potential antibiotic-producing organisms.
Machine learning algorithms are used to analyze large
genomic datasets to predict antibiotic biosynthetic gene
clusters (BGCs) and identify new antibiotic candidates
(Stokes et al., 2020). Deep learning models can analyze
molecular structures to detect compounds with potential
antibacterial activity. Compared to conventional high-
throughput screening methods, this approach enables
the identification of new antibiotic candidates more
rapidly and cost-effectively (David et al., 2021). Deep
learning tools, such as DeepBGC have demonstrated
strong performance in predicting antibiotic biosynthetic
gene clusters. This tool achieved an accuracy score of
94.6% AUC in identifying new BGC classes that had
not been encountered before (Hannigan et al., 2019).
For example, the deep learning model DeepARG,
developed by Arango-Argoty et al. (2018), can predict
antibiotic resistance genes in metagenomic data with

from

high accuracy. Such models offer higher sensitivity and
specificity than traditional approaches. Bioinformatics
and machine learning methods are also used for
the functional characterization of resistance genes.
The Comprehensive Antibiotic Resistance Database
(CARD), developed by Alcock et al. (2020), provides
a comprehensive catalogue of antibiotic resistance
genes and associated phenotypes. This database is used
to discover resistance genes present in the genomes
of uncultured microorganisms through metagenomic
analyses and to predict potential resistance functions of
novel genes. A global study conducted by Hendriksen et
al. (2019) utilized metagenomic data from wastewater
samples to reveal the worldwide distribution and
diversity of antibiotic resistance genes. Such studies
provide critical information for monitoring and
controlling antibiotic resistance at the community level.

The identification of target proteins is a critical step
in the discovery of new antibiotics. The deep learning
model DeepDrug3D, developed by Pu et al. (2019), can
classify drug-binding sites in protein structures with high
accuracy by performing three-dimensional analyses.
Such models play an important role in identifying and
characterizing new antibiotic targets, especially when
combined with structural bioinformatics methods. These
approaches help identify potential drug-binding regions
on proteins, thereby improving the understanding of
drug—protein AlphaFold2, developed
by Jumper et al. (2021), enables highly accurate
predictions of protein structures, allowing the structural
analysis of proteins whose structures have not been
determined experimentally. Such tools play a key role
in the identification and characterization of potential
antibiotic targets. In particular, accurately predicting
protein structures is considered a critical step in drug
design and in understanding biological processes.

interactions.
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Modeling ligand—protein interactions is a critical stage in
the design and development of new antibiotics, and with
the intensive use of bioinformatics and machine learning
methods, it has become increasingly sophisticated and
effective. For example, molecular docking programs
such as AutoDockVina, developed by Trott and Olson
(2010), predict possible binding conformations of
ligands on proteins, while deep learning models such
as DeepDTA, developed by Oztiirk et al. (2018), predict
drug—target interactions more rapidly and accurately.
The GROMACS software, developed by Abraham
et al. (2015), offers high performance for conducting
molecular dynamics simulations, enabling the
investigation of the dynamic behavior of ligand—protein
complexes. Pharmacophoremodeling tools such as
LigandScout, developed by Wolber and Langer (2005),
are used to define the structural features required for the
biological activity of ligands through three-dimensional
pharmacophore models. These advanced methods
make it possible to screen broader chemical spaces
more quickly and effectively during the drug discovery
process.

Antimicrobial databases, as well as sequence and
structure analysis tools, are critical resources in the
discovery and development of new antibiotics. These
tools provide researchers with access to extensive
datasets, facilitating the identification and optimization
of potential antibiotic candidates. For example, the
Collection of Anti-Microbial Peptides (CAMP) database,
introduced by Waghu and Thomas (2020), provides
comprehensive information on antimicrobial peptides,
enabling the investigation of their structure—activity
relationships. Similarly, the Database of Antimicrobial
Activity and Structure of Peptides (DBAASP),
created by Gogoladze et al. (2014), is used to analyze
the structure—activity relationships of antimicrobial
peptides. For protein structure analysis, homology
modeling tools such as SWISS-MODEL, updated by
Waterhouse et al. (2018), help predict protein structures
in cases where experimentally determined structures are
unavailable. Additionally, molecular visualization and
analysis programs such as UCSF Chimera, developed
by Pettersen et al. (2004), allow detailed examination of
protein structures and ligand—protein interactions. Data
mining and text mining techniques are also widely used
to extract information about antimicrobial compounds
from scientific literature and biological databases. For
instance, the DrugBank database, developed by Wishart
et al. (2006), provides comprehensive information on

approved and experimental drugs, serving as a valuable
resource in identifying new antibiotic candidates. These
tools and databases accelerate and optimize the process
of discovering and developing new antibiotics by
providing researchers with a vast pool of information. In
the future, the further expansion and integration of these
resources will contribute to the development of more
effective strategies in combating antibiotic resistance.

Machine Learning Methods

Machine learning methods offer powerful tools for
antibiotic discovery in bioinformatics. Supervised
and unsupervised learning represent the two main
approaches. In supervised learning, models are trained
using labeled data; for example, compounds with known
antibiotic activity can be used to predict new potential
candidates (Stokes et al., 2020). Unsupervised learning,
on the other hand, uncovers hidden structures in
unlabeled data, which can be important for discovering
new classes of antibiotics (Visan and Negut, 2024).
Feature selection identifies the most informative features
from large molecular datasets, thereby improving model
performance and reducing computational load (Saeys et
al., 2007). Data preprocessing steps include techniques
such as handling missing values, detecting outliers, and
eliminating redundant features; these steps enhance the
reliability and generalization ability of models (Lee
JW, 2022). By enabling the efficient analysis of large-
scale biological and chemical datasets, these methods
contribute to the faster and more efficient identification
of new antibiotic candidates.

Antibiotic activity prediction plays a critical role in
the discovery of new and effective antibiotics, with
Quantitative Structure—Activity Relationship (QSAR)
models and deep learning approaches standing out
in this field. QSAR models aim to mathematically
describe the relationship between molecular structure
and biological activity, offering the ability to rapidly
and cost-effectively screen large compound libraries
(Cherkasov et al., 2014). These models involve the
calculation of molecular descriptors, model construction
using statistical or machine learning methods, and model
validation. Deep learning approaches, on the other
hand, have revolutionized antibiotic activity prediction
in recent years, standing out for their ability to learn
from complex and large-scale datasets (Stokes et al.,
2020). Deep learning models are based on multi-layer
artificial neural networks and have the capability to
automatically learn complex molecular features. These
two approaches play complementary roles: QSAR
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Figure 3 Overview of Machine Learning Applications in Antibiotic Discovery. This diagram depicts the

machine learning pipeline for antibiotic research

models are advantageous in terms of interpretability
and low computational requirements, whereas deep
learning models excel at learning complex patterns and
leveraging large datasets.

The prediction of antibiotic resistance genes is of critical
importance for developing effective treatment strategies
and discovering new antibiotics. In this field, two
prominent approaches are the extraction of resistance
profiles from genomic data and the application of big
data and artificial intelligence.

Resistance profile extraction from genomic data is based
on the comprehensive analysis of bacterial genomes,
enabling the identification of potential resistance
mechanisms. McArthur et al. (2013) developed the
Comprehensive  Antibiotic Database
(CARD), creating a comprehensive resource that links
genomic data with antibiotic resistance. This database
provides a powerful tool for identifying and classifying
resistance genes. Big data and artificial intelligence
applications, on the other hand, integrate genomic
data with clinical, epidemiological, and environmental
information to produce more comprehensive and
accurate predictions. For example, Nguyen et al. (2018)
used machine learning algorithms to model the evolution
and spread of antibiotic resistance, demonstrating
that integrating different data sources can improve

Resistance

prediction accuracy. Similarly, Moradigaravand et al.
(2018) applied deep learning methods to predict E.
coli antibiotic resistance and showed that this approach
achieved higher accuracy than traditional methods.
These developments allow for the creation of faster,
more accurate, and more comprehensive approaches
to predicting antibiotic resistance genes, thereby
contributing to the formulation of new strategies in the
fight against antimicrobial resistance.

However, despite their high predictive performance,
the global generalizability of these models in clinical
decision-making and antibiotic discovery remains
limited by the current data landscape, which is largely
derived from high-income countries. Overcoming
this bias will require expanding clinical datasets from
diverse geographic and socioeconomic regions and
adopting experimental conditions that more closely
mimic the biological environment of infection (Nguyen
et al., 2018; Peiffer-Smadja et al., 2020; Ayon, 2023).

Applications of Bioinformatics and Machine

Learning

Bioinformatics and machine learning methods are
driving groundbreaking advancements in the discovery
ofnew antibiotic molecules. Inthis field, high-throughput
screening (HTS), virtual screening techniques, and Al-
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assisted drug design stand out. HTS enables the rapid
and automated testing of large compound libraries,
thereby accelerating the experimental evaluation of
potential antibiotic candidates (Ayon, 2023). Virtual
screening is a technique that systematically screens
large molecular databases using in silico methods
during the drug discovery process to predict potential
active compounds against a specific biological target.
This method serves as an effective pre-screening
tool, significantly reducing costs and time in the drug
development process before moving on to expensive
and time-consuming experimental stages (Oliveira et
al., 2023). Al-assisted drug design makes it possible to
design new molecules faster and more cost-effectively
than with traditional methods. For example, in 2020,
James Collins and his team used deep learning models
to discover halicin, a broad-spectrum antibiotic. This
study is a striking example of the potential of Al in
antibiotic discovery (Stokes et al., 2020). Similarly,
Zhavoronkov et al. (2019) used generative tensorial
reinforcement learning (GENTRL) to design new drug-
like molecules, demonstrating that this approach is
faster than conventional methods. These developments
highlight the critical role of bioinformatics and machine
learning methods in the discovery of new antibiotic
molecules and pave the way for more effective and
faster drug discovery processes in the future. The
identification of antibiotic combinations plays a crucial
role in combating multidrug resistance and developing
more effective treatment strategies. Chandrasekaran et
al. (2016) conducted a large-scale antibiotic combination
screening study using machine learning algorithms and
discovered novel combinations with synergistic effects.
This approach reduced the number of experimental trials
needed, saving both time and cost. Benefo et al. (2024)
utilized genomic data and machine learning algorithms to
predict the resistance profiles of pathogens to antibiotic
combinations. These advancements demonstrate the
advantages that bioinformatics and machine learning
methods provide in determining antibiotic combinations
and open the door to the development of more effective
and targeted combination therapies in the future.

Antibiotic resistance management is of critical
importance to global health today, with two key
approaches standing out: predicting the development
of resistance and establishing effective monitoring
and control strategies. The prediction of resistance
development has been greatly enhanced through the use
of bioinformatics and machine learning methods. For

example, Nguyen et al. (2018) developed a system that
predicts antibiotic resistance from bacterial genomes
using machine learning models such as XGBoost.
Feretzakis et al. (2020) employed various machine
learning methods to model the relationship between
antibiotic use and the development of resistance in
hospital settings. In their study, they compared the
performance of different methods in predicting antibiotic
susceptibility and demonstrated that these approaches
could be used to support empirical treatment decisions.
The results showed that analyzing microbiological
data alongside easily accessible information-such as
basic patient details-can enable the early prediction of
antibiotic resistance. These developments highlight the
advantages that bioinformatics and machine learning
methods provide in antibiotic resistance management
and pave the way for the development of more effective
and proactive resistance management strategies in the
future.

The application of bioinformatics and machine learning
methods in clinical settings brings not only theoretical
advantages but also various practical challenges. Peiffer-
Smadja et al. (2020) examined the potential of machine
learning-based clinical decision support systems (ML-
CDSS) in critical areas such as diagnosis, treatment
management, and antibiotic selection in infectious
diseases. Their study indicates that these systems can
play a significant role in combating antimicrobial
resistance by optimizing clinical decision-making
processes. However, it also emphasizes that challenges,
such as data quality, incompatibilities between
healthcare systems, and real-time implementation need
to be addressed for effective integration of ML-CDSS.
Similarly, Rawson et al. (2018), in their evaluation of
artificial intelligence applications within antimicrobial
stewardship programs, discussed several challenges
encountered in clinical practice. Their work highlights
issues such as data integration problems between
different hospital systems, the necessity of adapting
algorithms to local populations, and the importance
of healthcare professionals’ trust in these systems.
Furthermore, they stress that the successful adoption
of Al-based systems requires involving end users in
the development process and ensuring transparency.
These studies demonstrate that, for bioinformatics
and machine learning methods to be successfully
implemented in clinical environments, technological
advancements must be accompanied by organizational
and cultural changes.
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Table 1 Summary of representative bioinformatics and machine learning methods applied in antibiotic discovery

Reported Performance

Method Primary Application (as stated in source) Main Limitations Reference
Identification of Data imbalance for Aranco-
DeepARG antibiotic resistance Precision = 0.97; Recall~  underrepresented ARG Ar 0% »
p genes (ARGS) in 0.90 (cross-validation). classes; uncertainty in al g2 O}i 3
metagenomic samples. novel/rare variants. ?
Classification of AUROC 0.986 (nucleotide), Limited to nucleotide/heme
DeepDrug3D protein—ligand binding 0.987 (heme); overall classes; depends on voxel  Puetal.,
pLTug pockets (nucleotide accuracy ~ 95% representation and 3D 2019
vs. heme). (TOUGH-C1 dataset). structural data availability.
Drug-target binding  CI: 0.878 (Davis), 0.863 1Sa i‘%{‘;e;l];e;gfiyt;?:l“t; Stk ot
DeepDTA affinity prediction (KIBA); MSE: 0.261/0.194;
; context; dataset-dependent  al., 2018
(regression). model type: CNN/CNN.
performance.
In the CASP14 assessment, Limited accuracy for
Highly accurate AlphaFold2 achieved multi-domain complexes
AlphaFold2 prediction of three- near-experimental and flexible/disordered Jumper et
P dimensional protein accuracy across all targets  regions; ligand and cofactor al., 2021
structure. based on GDT TS score positions not directly
distributions. predicted.
According to the original
. pgbllgatlon, AutoDock . Limited correlation with
Molecular docking Vina is a molecular docking .\ Trott &
AutoDock o . absolute affinities; receptor
. and binding pose program that is both much s Olson,
Vina - flexibility and solvent
prediction. faster and more accurate 2010
. effects underrepresented.
than its predecessor,
AutoDock 4.
GROMACS Molecular dynamics No p.re.d1ctlve accuracy High compl.lt.atlonal cost;
(MD analysis and post- metric; performance results sensitive to force Abraham
. . . determined by force field field and simulation etal., 2015
simulations) docking refinement. .
and setup parameters. timescale.
Curation and analysis Th.e abl!lty - QAMPSlgn
. . o . to identify peptides Waghu
of antimicrobial No quantitative metric accordine to their families  and
CAMP peptide (AMP) (database-based resource); . .. . &
is limited by the number Thomas,
sequences and regularly updated content. D ..
- of family signatures it is 2020
activities. .
currently trained on.
Antimicrobial peptide . Experimental
DBAASP (AMP) activity and Perfgrmance metric not heterogeneity; variation in Gogoladze
applicable (curated dataset). Iy etal., 2014
structure database. assay conditions.
Deriving
3-dimensional (3- It is fast enough tF) %enerate Fleautines lmn Bamat Wolber
D) pharmacophores pharmacophores in “a few .
. . v . protein complexes; and
LigandScout from protein-bound seconds” and selective o
ligands and using enough to identify known qualitative and template- Langer,
dependent. 2005

these models as virtual
screening filters.

targets without error.
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Reported Performance

Method Primary Application (as stated in source) Main Limitations Reference
Predicting
EE;};%E&:&ICVSY’ Interpretable and data-

QSAR Models or toxicological Performance depends on eiijlzlrz?it;:tl)litﬁhm;;e; Cherkasov
properties of dataset and validation. & . ty etal., 2014
compounds from their extrapolation beyond the

training set.
molecular structure
descriptors.
A deep generative Out of the six compounds
model used to design  designed and synthesized 3:;6 grznzziéeglrctc})lr;pounds
de novo small by GENTRL, four exhibited o t}i/mizqation i1 terms of Zhav-

GENTRL molecule drugs by activity in biochemical serz)lectivit specificity. and oronkov et

optimizing synthetic assays, with IC, values of Y, 5P b al., 2019

feasibility, novelty,
and biological activity.

10 nM, 21 nM, 278 nM,
and 1 uM, respectively.

other medicinal chemistry
properties.

Case Studies

Bioinformatics and machine learning methods have
achieved significant successes in the fields of antibiotic
discovery and resistance management. One of the most
notable antibiotic discovery projects was conducted
by James Collins and colleagues, in which researchers
used deep learning models to discover halicin, a broad-
spectrum antibiotic. Halicin represents a new class of
antibiotics shown to be effective against multidrug-
resistant bacteria. This study demonstrated the potential
of Al-assisted drug discovery, offering a much faster
and more cost-effective discovery process compared
to traditional methods (Stokes, 2020). Another
antibiotic discovered using machine learning methods
is Abaucin, developed against the multidrug-resistant
Gram-negative pathogen Acinetobacter baumannii.
Researchers screened approximately 7,500 small
molecules to identify compounds that inhibit the growth
of A. baumannii in vitro. They identified nine effective
compounds and highlighted the most effective, Abaucin,
as a potential therapeutic candidate. Abaucin is only
effective against A. baumannii and acts by disrupting
lipoprotein transport via the LolE protein (Liu et
al., 2023). Moradigaravand et al. (2018) developed
a machine learning model that predicts antibiotic
resistance in Escherichia coli with high accuracy using
whole-genome sequencing data. In their study, data
from 1,936 isolates were used to predict resistance
profiles for 11 different antibiotics. This approach was
able to predict resistance without prior knowledge

of resistance mechanisms and provided an important
framework for integrating genomic and epidemiological
data into clinical diagnosis. Similarly, Pesesky et al.
(2016) evaluated the effectiveness of combining whole-
genome sequencing data with machine learning and
rule-based algorithms to predict the antibiotic resistance
profiles of Gram-negative bacilli. The study showed
that genotypic, data-driven predictions could be made
more rapidly than phenotypic antibiotic susceptibility
testing. This method offers significant potential,
particularly in clinical settings, to optimize antibiotic
selection and support antimicrobial resistance control
strategies. These case studies illustrate the substantial
advantages provided by bioinformatics and machine
learning methods in antibiotic discovery and resistance
management, offering hope for the development of
more effective antibiotic therapies in the future.

Trends and Challenges

The applications of bioinformatics and machine
learning methods in antibiotic discovery and resistance
management offer great potential but also bring
various challenges and ethical issues. Chief among
these challenges is the processing and integration of
large and heterogeneous datasets. While integrating
genomic data enables a better understanding of complex
biological systems, problems such as data quality and
standardization remain significant obstacles (de la
Lastra et al, 2024). Moreover, the interpretability
and explainability of machine learning models are
critically important, especially in clinical applications.
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In this context, Rudin (2019) addressed the lack of
transparency in Al models used for high-stakes decisions,
emphasizing that transparent and interpretable models
should be preferred. Future research directions include
single-cell genomic analyses and Al-assisted drug
design. For example, Zhavoronkov et al. (2019) used
generative tensorial reinforcement learning (GENTRL)
to design novel drug-like molecules and demonstrated
that this approach is much faster and more effective than
traditional methods. From an ethical and legal standpoint,
the privacy and security of personal genomic data are
major concerns. Mittos et al. (2019) discussed ethical
issues and legal regulations related to the use of genomic
data, drawing attention to the difficulties of balancing
data sharing with privacy. Furthermore, the regulation
of Al-assisted antibiotic discovery and its application
poses new challenges for the pharmaceutical industry
and healthcare systems. In light of these developments,
it is evident that the effective use of bioinformatics and
machine learning methods in antibiotic discovery and
resistance management will require interdisciplinary
collaboration, the establishment of ethical standards,
and continuous technological innovation.

CONCLUSION

Antibiotic resistance is one of the most pressing threats
to global health security, and addressing this challenge
is critical to safeguarding human health. In this context,
the opportunities offered by bioinformatics and
machine learning in the fields of antibiotic discovery
and resistance management go far beyond traditional
approaches, representing a paradigm shift. The in-depth
analysis of genomic and metagenomic data enables the
identification of antibiotic-producing microorganisms
and the mapping of resistance genes, with bioinformatics
tools driving significant advances in these areas. Machine
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Otkrivanje novih antibiotika koriStenjem bioinformatike i metoda
masinskog ucenja

SAZETAK

Otpornost na antibiotike predstavlja ozbiljnu globalnu zdravstvenu prijetnju koja svake godine
uzrokuje oko 1,27 miliona smrtnih slu¢ajeva, a smatra se da ¢e taj broj do 2050. godine doseci
10 miliona. Razvoj novih antibiotika je izrazito zahtjevan proces koji obicno traje 10-15 godina
uz investiciju od oko 1,5 milijarde americ¢kih dolara. U ovom procesu genomske i metagenomske
analize igraju odlucujucu ulogu u otkrivanju genetskog potencijala mikroorganizama koji se ne
mogu kultivirati, kao i u identificiranju novih mikroorganizama koji proizvode antibiotike. Osim
toga, modeli dubokog u¢enja analiziraju molekularne strukture s ciljem identifikacije novih spojeva
s antibakterijskom aktivnos$éu, dok virtualne tehnike skrininga analiziraju velike molekularne
baze podataka s ciljem odredivanja potencijalno aktivnih spojeva. Dokazano je da modeli
razvijeni koriStenjem dubokog ucenja mogu predvidjeti genske klastere za biosintezu antibiotika
s precizno$¢u od preko 90%. Osim ovakvih pristupa, identifikacija antibiotskih kombinacija i
predvidanje sinergistickih u¢inaka omoguc¢avaju razvoj efektivnijih terapijskih strategija u borbi
protiv multirezistentnosti na lijekove. Ovakve metode doprinose razvoju proaktivnih pristupa
upravljanju antibiotskom rezistencijom i optimiziranju otkrivanja novih antibiotika i u¢inkovitijoj
primjeni postoje¢ih. Ovaj rad ispituje otkrivanje novih antibiotika koriStenjem bioinformatike i
metoda masinskog ucenja.

Kljuéne rije€i: Bioinformatika, masinsko ucenje, otkrivanje novih antibiotika




