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ABSTRACT
Antibiotic resistance is a serious global health threat that causes 
approximately 1.27 million deaths worldwide each year and is 
expected to reach 10 million by 2050. New antibiotic development 
is exceptionally challenging, typically requiring 10-15 years and 
approximately $1.5 billion investment. In this process, genomic and 
metagenomic analyses play a critical role by revealing the genetic 
potential of unculturable microorganisms and identifying new 
antibiotic-producing microorganisms. Additionally, deep learning 
models analyze molecular structures to identify new compounds 
with antibacterial activity, and virtual screening techniques analyze 
large molecular databases to determine potential active compounds. 
It has been shown that models developed using deep learning 
can predict antibiotic biosynthesis gene clusters with over 90% 
accuracy. Alongside these approaches, the identification of antibiotic 
combinations and the prediction of synergistic effects allow for the 
development of more effective treatment strategies against multi-
drug resistance. These methods contribute to the development of 
proactive approaches in managing antibiotic resistance and optimize 
the discovery of new antibiotics and the effective use of existing 
ones. This review examines the discovery of new antibiotics using 
bioinformatics and machine learning methods.

Keywords: Bioinformatics, machine learning, new antibiotic 
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INTRODUCTION
Antibiotic resistance has emerged as one of the most critical global health threats of the 21st century and is defined by 
the World Health Organization as “one of the greatest threats to global public health, food security, and development” 
(WHO, 2023). This problem arises from bacteria developing resistance to antibiotics, causing treatable infections to 
become fatal. Various factors contribute to the rise of antibiotic resistance, including the excessive and inappropriate 
use of antibiotics, inadequate infection control, and the challenges in developing new antibiotics (Ventola, 2015). 
According to the World Health Organization (WHO), antimicrobial resistance (AMR) was responsible for an 
estimated 1.27 million deaths in 2019, based on global statistical modelling across 204 countries (Murray et al., 
2022). These estimates include uncertainty intervals (95% UI 0.91–1.71 million deaths) and indicate that, if current 
trends continue, the annual number of deaths could reach 10 million by 2050. Furthermore, according to World 
Bank data, global GDP losses of up to 3.8% could occur by 2050 (World Bank, 2017). Addressing this serious threat 
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requires a multifaceted approach, with strategies such 
as promoting the rational use of antibiotics, developing 
new antibiotics, strengthening global surveillance 
systems, adopting the One Health approach, and 
enhancing international cooperation being of paramount 
importance (Ajulo and Awosile, 2024).

The rapid spread of antibiotic resistance and the 
decreasing effectiveness of existing antibiotics have 
made the development of new antibiotics an urgent 
global health priority (WHO, 2023). However, the 
development of new antibiotics is a long, costly, and 
challenging process. Typically, the period from the 
discovery of a new antibiotic to its market release 
ranges from 10 to 15 years, with an average cost 
of approximately 1.5 billion USD (Luepke et al., 
2017; Plackett, 2020). This lengthy process includes 
basic research, preclinical studies, clinical trials, and 
regulatory approval stages. Moreover, approximately 
90% of drug candidates that enter Phase I–III clinical 
trials ultimately fail to reach approval, largely due to 
insufficient efficacy and unmanageable toxicity (Sun 
et al., 2022). The complexity of the new antibiotic 
development process, combined with its high cost and 
low return on investment, has reduced the willingness of 
pharmaceutical companies to invest in this field, leading 
to a decline in new antibiotic discoveries (Plackett, 
2020). Indeed, while the discovery of new antibiotic 
classes peaked in the 1940s and 1950s, it has shown 
a significant decline since the 1960s. The numerical 
distribution of new antibiotic classes discovered 
between 1900 and 2009 is shown in Figure 1.

The average annual revenue generated after the 
market launch of a new antibiotic is approximately 46 
million USD (Plackett, 2020). This figure is far from 
covering the development costs and is considerably 
lower compared to other types of drugs. In addition, 
the use of new antibiotics is often restricted to prevent 
the development of resistance, which further reduces 
sales and profitability. To address this issue, strategies 
such as promoting academia–industry collaborations, 
developing new business models, and increasing public 
funding have been proposed (Theuretzbacher et al., 
2020). New financing models, such as the market entry 
reward, aim to reduce risk and encourage investment by 
providing substantial rewards to successful antibiotic 
developers (Årdal et al., 2020). Furthermore, global 
initiatives such as the Global Antibiotic Research and 
Development Partnership (CARB-X) and the Combating 
Antibiotic-Resistant Bacteria Biopharmaceutical 
Accelerator (GARDP) are working to accelerate the 
discovery and development of new antibiotics (Simpkin 
et al., 2017). Nevertheless, along with the development 
of new antibiotics, the rational use of existing antibiotics 
and the prevention of antimicrobial resistance are of 
great importance (Salam et al., 2023).

Bioinformatics and machine learning methods hold 
great promise in the fight against antibiotic resistance 
and have become an important tool in the discovery and 
development of new antibiotics. These technologies 
analyze large datasets to rapidly and effectively identify 
potential antibiotic candidates, offering significant time 
and cost savings compared to traditional methods (Stokes 
et al., 2020). Although the applications of bioinformatics 

Figure 1 Historical 
distribution of new 
antibiotic class 
discoveries (Stennett et 
al., 2022)
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and machine learning to antibiotic research have been 
discussed separately in the literature, an integrated 
perspective that combines both computational fields and 
their latest methodological advances remains lacking. 
This narrative review synthesizes recent developments 
in bioinformatics and machine learning applications for 
antibiotic discovery. A comprehensive literature search 
was conducted using PubMed, Web of Science, and 
Google Scholar databases.

Bioinformatics Methods

Genomic and metagenomic analyses play a crucial 
role in the discovery and identification of antibiotic-
producing microorganisms. These culture-independent 
approaches are effective in revealing the genetic 
potential of microorganisms that cannot be cultured 
(Hover et al., 2018). By overcoming the limitations 
of traditional culture-based methods, these techniques 
enable the analysis of genome sequences from 
microbial communities in natural environments that 
may contain potential antibiotic-producing organisms. 
Machine learning algorithms are used to analyze large 
genomic datasets to predict antibiotic biosynthetic gene 
clusters (BGCs) and identify new antibiotic candidates 
(Stokes et al., 2020). Deep learning models can analyze 
molecular structures to detect compounds with potential 
antibacterial activity. Compared to conventional high-
throughput screening methods, this approach enables 
the identification of new antibiotic candidates more 
rapidly and cost-effectively (David et al., 2021). Deep 
learning tools, such as DeepBGC have demonstrated 
strong performance in predicting antibiotic biosynthetic 
gene clusters. This tool achieved an accuracy score of 
94.6% AUC in identifying new BGC classes that had 
not been encountered before (Hannigan et al., 2019). 
For example, the deep learning model DeepARG, 
developed by Arango-Argoty et al. (2018), can predict 
antibiotic resistance genes in metagenomic data with 

high accuracy. Such models offer higher sensitivity and 
specificity than traditional approaches. Bioinformatics 
and machine learning methods are also used for 
the functional characterization of resistance genes. 
The Comprehensive Antibiotic Resistance Database 
(CARD), developed by Alcock et al. (2020), provides 
a comprehensive catalogue of antibiotic resistance 
genes and associated phenotypes. This database is used 
to discover resistance genes present in the genomes 
of uncultured microorganisms through metagenomic 
analyses and to predict potential resistance functions of 
novel genes. A global study conducted by Hendriksen et 
al. (2019) utilized metagenomic data from wastewater 
samples to reveal the worldwide distribution and 
diversity of antibiotic resistance genes. Such studies 
provide critical information for monitoring and 
controlling antibiotic resistance at the community level.

The identification of target proteins is a critical step 
in the discovery of new antibiotics. The deep learning 
model DeepDrug3D, developed by Pu et al. (2019), can 
classify drug-binding sites in protein structures with high 
accuracy by performing three-dimensional analyses. 
Such models play an important role in identifying and 
characterizing new antibiotic targets, especially when 
combined with structural bioinformatics methods. These 
approaches help identify potential drug-binding regions 
on proteins, thereby improving the understanding of 
drug–protein interactions. AlphaFold2, developed 
by Jumper et al. (2021), enables highly accurate 
predictions of protein structures, allowing the structural 
analysis of proteins whose structures have not been 
determined experimentally. Such tools play a key role 
in the identification and characterization of potential 
antibiotic targets. In particular, accurately predicting 
protein structures is considered a critical step in drug 
design and in understanding biological processes.

Figure 2 Overview of the 
Applications of Bioinformatics 
Methods in Antibiotic 
Discovery. This schematic 
illustrates the integrated 
workflow of bioinformatics 
approaches in antibiotic 
research
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Modeling ligand–protein interactions is a critical stage in 
the design and development of new antibiotics, and with 
the intensive use of bioinformatics and machine learning 
methods, it has become increasingly sophisticated and 
effective. For example, molecular docking programs 
such as AutoDockVina, developed by Trott and Olson 
(2010), predict possible binding conformations of 
ligands on proteins, while deep learning models such 
as DeepDTA, developed by Öztürk et al. (2018), predict 
drug–target interactions more rapidly and accurately. 
The GROMACS software, developed by Abraham 
et al. (2015), offers high performance for conducting 
molecular dynamics simulations, enabling the 
investigation of the dynamic behavior of ligand–protein 
complexes. Pharmacophoremodeling tools such as 
LigandScout, developed by Wolber and Langer (2005), 
are used to define the structural features required for the 
biological activity of ligands through three-dimensional 
pharmacophore models. These advanced methods 
make it possible to screen broader chemical spaces 
more quickly and effectively during the drug discovery 
process.

Antimicrobial databases, as well as sequence and 
structure analysis tools, are critical resources in the 
discovery and development of new antibiotics. These 
tools provide researchers with access to extensive 
datasets, facilitating the identification and optimization 
of potential antibiotic candidates. For example, the 
Collection of Anti-Microbial Peptides (CAMP) database, 
introduced by Waghu and Thomas (2020), provides 
comprehensive information on antimicrobial peptides, 
enabling the investigation of their structure–activity 
relationships. Similarly, the Database of Antimicrobial 
Activity and Structure of Peptides (DBAASP), 
created by Gogoladze et al. (2014), is used to analyze 
the structure–activity relationships of antimicrobial 
peptides. For protein structure analysis, homology 
modeling tools such as SWISS-MODEL, updated by 
Waterhouse et al. (2018), help predict protein structures 
in cases where experimentally determined structures are 
unavailable. Additionally, molecular visualization and 
analysis programs such as UCSF Chimera, developed 
by Pettersen et al. (2004), allow detailed examination of 
protein structures and ligand–protein interactions. Data 
mining and text mining techniques are also widely used 
to extract information about antimicrobial compounds 
from scientific literature and biological databases. For 
instance, the DrugBank database, developed by Wishart 
et al. (2006), provides comprehensive information on 

approved and experimental drugs, serving as a valuable 
resource in identifying new antibiotic candidates. These 
tools and databases accelerate and optimize the process 
of discovering and developing new antibiotics by 
providing researchers with a vast pool of information. In 
the future, the further expansion and integration of these 
resources will contribute to the development of more 
effective strategies in combating antibiotic resistance.

Machine Learning Methods

Machine learning methods offer powerful tools for 
antibiotic discovery in bioinformatics. Supervised 
and unsupervised learning represent the two main 
approaches. In supervised learning, models are trained 
using labeled data; for example, compounds with known 
antibiotic activity can be used to predict new potential 
candidates (Stokes et al., 2020). Unsupervised learning, 
on the other hand, uncovers hidden structures in 
unlabeled data, which can be important for discovering 
new classes of antibiotics (Visan and Negut, 2024). 
Feature selection identifies the most informative features 
from large molecular datasets, thereby improving model 
performance and reducing computational load (Saeys et 
al., 2007). Data preprocessing steps include techniques 
such as handling missing values, detecting outliers, and 
eliminating redundant features; these steps enhance the 
reliability and generalization ability of models (Lee 
JW, 2022). By enabling the efficient analysis of large-
scale biological and chemical datasets, these methods 
contribute to the faster and more efficient identification 
of new antibiotic candidates.

Antibiotic activity prediction plays a critical role in 
the discovery of new and effective antibiotics, with 
Quantitative Structure–Activity Relationship (QSAR) 
models and deep learning approaches standing out 
in this field. QSAR models aim to mathematically 
describe the relationship between molecular structure 
and biological activity, offering the ability to rapidly 
and cost-effectively screen large compound libraries 
(Cherkasov et al., 2014). These models involve the 
calculation of molecular descriptors, model construction 
using statistical or machine learning methods, and model 
validation. Deep learning approaches, on the other 
hand, have revolutionized antibiotic activity prediction 
in recent years, standing out for their ability to learn 
from complex and large-scale datasets (Stokes et al., 
2020). Deep learning models are based on multi-layer 
artificial neural networks and have the capability to 
automatically learn complex molecular features. These 
two approaches play complementary roles: QSAR 
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models are advantageous in terms of interpretability 
and low computational requirements, whereas deep 
learning models excel at learning complex patterns and 
leveraging large datasets.

The prediction of antibiotic resistance genes is of critical 
importance for developing effective treatment strategies 
and discovering new antibiotics. In this field, two 
prominent approaches are the extraction of resistance 
profiles from genomic data and the application of big 
data and artificial intelligence.

Resistance profile extraction from genomic data is based 
on the comprehensive analysis of bacterial genomes, 
enabling the identification of potential resistance 
mechanisms. McArthur et al. (2013) developed the 
Comprehensive Antibiotic Resistance Database 
(CARD), creating a comprehensive resource that links 
genomic data with antibiotic resistance. This database 
provides a powerful tool for identifying and classifying 
resistance genes. Big data and artificial intelligence 
applications, on the other hand, integrate genomic 
data with clinical, epidemiological, and environmental 
information to produce more comprehensive and 
accurate predictions. For example, Nguyen et al. (2018) 
used machine learning algorithms to model the evolution 
and spread of antibiotic resistance, demonstrating 
that integrating different data sources can improve 

prediction accuracy. Similarly, Moradigaravand et al. 
(2018) applied deep learning methods to predict E. 
coli antibiotic resistance and showed that this approach 
achieved higher accuracy than traditional methods. 
These developments allow for the creation of faster, 
more accurate, and more comprehensive approaches 
to predicting antibiotic resistance genes, thereby 
contributing to the formulation of new strategies in the 
fight against antimicrobial resistance.

However, despite their high predictive performance, 
the global generalizability of these models in clinical 
decision-making and antibiotic discovery remains 
limited by the current data landscape, which is largely 
derived from high-income countries. Overcoming 
this bias will require expanding clinical datasets from 
diverse geographic and socioeconomic regions and 
adopting experimental conditions that more closely 
mimic the biological environment of infection (Nguyen 
et al., 2018; Peiffer-Smadja et al., 2020; Ayon, 2023).

Applications of Bioinformatics and Machine 
Learning

Bioinformatics and machine learning methods are 
driving groundbreaking advancements in the discovery 
of new antibiotic molecules. In this field, high-throughput 
screening (HTS), virtual screening techniques, and AI-

Figure 3 Overview of Machine Learning Applications in Antibiotic Discovery. This diagram depicts the 
machine learning pipeline for antibiotic research
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assisted drug design stand out. HTS enables the rapid 
and automated testing of large compound libraries, 
thereby accelerating the experimental evaluation of 
potential antibiotic candidates (Ayon, 2023). Virtual 
screening is a technique that systematically screens 
large molecular databases using in silico methods 
during the drug discovery process to predict potential 
active compounds against a specific biological target. 
This method serves as an effective pre-screening 
tool, significantly reducing costs and time in the drug 
development process before moving on to expensive 
and time-consuming experimental stages (Oliveira et 
al., 2023). AI-assisted drug design makes it possible to 
design new molecules faster and more cost-effectively 
than with traditional methods. For example, in 2020, 
James Collins and his team used deep learning models 
to discover halicin, a broad-spectrum antibiotic. This 
study is a striking example of the potential of AI in 
antibiotic discovery (Stokes et al., 2020). Similarly, 
Zhavoronkov et al. (2019) used generative tensorial 
reinforcement learning (GENTRL) to design new drug-
like molecules, demonstrating that this approach is 
faster than conventional methods. These developments 
highlight the critical role of bioinformatics and machine 
learning methods in the discovery of new antibiotic 
molecules and pave the way for more effective and 
faster drug discovery processes in the future. The 
identification of antibiotic combinations plays a crucial 
role in combating multidrug resistance and developing 
more effective treatment strategies. Chandrasekaran et 
al. (2016) conducted a large-scale antibiotic combination 
screening study using machine learning algorithms and 
discovered novel combinations with synergistic effects. 
This approach reduced the number of experimental trials 
needed, saving both time and cost. Benefo et al. (2024) 
utilized genomic data and machine learning algorithms to 
predict the resistance profiles of pathogens to antibiotic 
combinations. These advancements demonstrate the 
advantages that bioinformatics and machine learning 
methods provide in determining antibiotic combinations 
and open the door to the development of more effective 
and targeted combination therapies in the future.

Antibiotic resistance management is of critical 
importance to global health today, with two key 
approaches standing out: predicting the development 
of resistance and establishing effective monitoring 
and control strategies. The prediction of resistance 
development has been greatly enhanced through the use 
of bioinformatics and machine learning methods. For 

example, Nguyen et al. (2018) developed a system that 
predicts antibiotic resistance from bacterial genomes 
using machine learning models such as XGBoost. 
Feretzakis et al. (2020) employed various machine 
learning methods to model the relationship between 
antibiotic use and the development of resistance in 
hospital settings. In their study, they compared the 
performance of different methods in predicting antibiotic 
susceptibility and demonstrated that these approaches 
could be used to support empirical treatment decisions. 
The results showed that analyzing microbiological 
data alongside easily accessible information-such as 
basic patient details-can enable the early prediction of 
antibiotic resistance. These developments highlight the 
advantages that bioinformatics and machine learning 
methods provide in antibiotic resistance management 
and pave the way for the development of more effective 
and proactive resistance management strategies in the 
future.

The application of bioinformatics and machine learning 
methods in clinical settings brings not only theoretical 
advantages but also various practical challenges. Peiffer-
Smadja et al. (2020) examined the potential of machine 
learning-based clinical decision support systems (ML-
CDSS) in critical areas such as diagnosis, treatment 
management, and antibiotic selection in infectious 
diseases. Their study indicates that these systems can 
play a significant role in combating antimicrobial 
resistance by optimizing clinical decision-making 
processes. However, it also emphasizes that challenges, 
such as data quality, incompatibilities between 
healthcare systems, and real-time implementation need 
to be addressed for effective integration of ML-CDSS. 
Similarly, Rawson et al. (2018), in their evaluation of 
artificial intelligence applications within antimicrobial 
stewardship programs, discussed several challenges 
encountered in clinical practice. Their work highlights 
issues such as data integration problems between 
different hospital systems, the necessity of adapting 
algorithms to local populations, and the importance 
of healthcare professionals’ trust in these systems. 
Furthermore, they stress that the successful adoption 
of AI-based systems requires involving end users in 
the development process and ensuring transparency. 
These studies demonstrate that, for bioinformatics 
and machine learning methods to be successfully 
implemented in clinical environments, technological 
advancements must be accompanied by organizational 
and cultural changes.
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Table 1 Summary of representative bioinformatics and machine learning methods applied in antibiotic discovery

Method Primary Application Reported Performance  
(as stated in source) Main Limitations Reference

DeepARG

Identification of 
antibiotic resistance 
genes (ARGs) in 
metagenomic samples.

Precision ≈ 0.97; Recall ≈ 
0.90 (cross-validation).

Data imbalance for 
underrepresented ARG 
classes; uncertainty in 
novel/rare variants.

Arango-
Argoty et 
al., 2018

DeepDrug3D

Classification of 
protein–ligand binding 
pockets (nucleotide 
vs. heme).

AUROC 0.986 (nucleotide), 
0.987 (heme); overall 
accuracy ≈ 95% 
(TOUGH-C1 dataset).

Limited to nucleotide/heme 
classes; depends on voxel 
representation and 3D 
structural data availability.

Pu et al., 
2019

DeepDTA
Drug–target binding 
affinity prediction 
(regression).

CI: 0.878 (Davis), 0.863 
(KIBA); MSE: 0.261/0.194; 
model type: CNN/CNN.

Sequence-only input; 
lacks 3D structural 
context; dataset-dependent 
performance.

Öztürk et 
al., 2018

AlphaFold2

Highly accurate 
prediction of three-
dimensional protein 
structure.

In the CASP14 assessment, 
AlphaFold2 achieved 
near-experimental 
accuracy across all targets 
based on GDT_TS score 
distributions.

Limited accuracy for 
multi-domain complexes 
and flexible/disordered 
regions; ligand and cofactor 
positions not directly 
predicted.

Jumper et 
al., 2021

AutoDock 
Vina

Molecular docking 
and binding pose 
prediction.

According to the original 
publication, AutoDock 
Vina is a molecular docking 
program that is both much 
faster and more accurate 
than its predecessor, 
AutoDock 4.

Limited correlation with 
absolute affinities; receptor 
flexibility and solvent 
effects underrepresented.

Trott & 
Olson, 
2010

GROMACS 
(MD 
simulations)

Molecular dynamics 
analysis and post-
docking refinement.

No predictive accuracy 
metric; performance 
determined by force field 
and setup parameters.

High computational cost; 
results sensitive to force 
field and simulation 
timescale.

Abraham 
et al., 2015

CAMP

Curation and analysis 
of antimicrobial 
peptide (AMP) 
sequences and 
activities.

No quantitative metric 
(database-based resource); 
regularly updated content.

The ability of CAMPSign 
to identify peptides 
according to their families 
is limited by the number 
of family signatures it is 
currently trained on.

Waghu 
and 
Thomas, 
2020

DBAASP
Antimicrobial peptide 
(AMP) activity and 
structure database.

Performance metric not 
applicable (curated dataset).

Experimental 
heterogeneity; variation in 
assay conditions.

Gogoladze 
et al., 2014

LigandScout

Deriving 
3-dimensional (3-
D) pharmacophores 
from protein-bound 
ligands and using 
these models as virtual 
screening filters.

It is fast enough to generate 
pharmacophores in “a few 
seconds” and selective 
enough to identify known 
targets without error.

Requires known ligand–
protein complexes; 
qualitative and template-
dependent.

Wolber 
and 
Langer, 
2005
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Method Primary Application Reported Performance  
(as stated in source) Main Limitations Reference

QSAR Models

Predicting 
biological activity, 
physicochemical, 
or toxicological 
properties of 
compounds from their 
molecular structure 
descriptors.

Performance depends on 
dataset and validation.

Interpretable and data-
efficient, but limited 
generalizability and 
extrapolation beyond the 
training set.

Cherkasov 
et al., 2014

GENTRL

A deep generative 
model used to design 
de novo small 
molecule drugs by 
optimizing synthetic 
feasibility, novelty, 
and biological activity.

Out of the six compounds 
designed and synthesized 
by GENTRL, four exhibited 
activity in biochemical 
assays, with IC50 values of 
10 nM, 21 nM, 278 nM, 
and 1 μM, respectively.

The generated compounds 
may require further 
optimization in terms of 
selectivity, specificity, and 
other medicinal chemistry 
properties.

Zhav-
oronkov et 
al., 2019

Case Studies

Bioinformatics and machine learning methods have 
achieved significant successes in the fields of antibiotic 
discovery and resistance management. One of the most 
notable antibiotic discovery projects was conducted 
by James Collins and colleagues, in which researchers 
used deep learning models to discover halicin, a broad-
spectrum antibiotic. Halicin represents a new class of 
antibiotics shown to be effective against multidrug-
resistant bacteria. This study demonstrated the potential 
of AI-assisted drug discovery, offering a much faster 
and more cost-effective discovery process compared 
to traditional methods (Stokes, 2020). Another 
antibiotic discovered using machine learning methods 
is Abaucin, developed against the multidrug-resistant 
Gram-negative pathogen Acinetobacter baumannii. 
Researchers screened approximately 7,500 small 
molecules to identify compounds that inhibit the growth 
of A. baumannii in vitro. They identified nine effective 
compounds and highlighted the most effective, Abaucin, 
as a potential therapeutic candidate. Abaucin is only 
effective against A. baumannii and acts by disrupting 
lipoprotein transport via the LolE protein (Liu et 
al., 2023). Moradigaravand et al. (2018) developed 
a machine learning model that predicts antibiotic 
resistance in Escherichia coli with high accuracy using 
whole-genome sequencing data. In their study, data 
from 1,936 isolates were used to predict resistance 
profiles for 11 different antibiotics. This approach was 
able to predict resistance without prior knowledge 

of resistance mechanisms and provided an important 
framework for integrating genomic and epidemiological 
data into clinical diagnosis. Similarly, Pesesky et al. 
(2016) evaluated the effectiveness of combining whole-
genome sequencing data with machine learning and 
rule-based algorithms to predict the antibiotic resistance 
profiles of Gram-negative bacilli. The study showed 
that genotypic, data-driven predictions could be made 
more rapidly than phenotypic antibiotic susceptibility 
testing. This method offers significant potential, 
particularly in clinical settings, to optimize antibiotic 
selection and support antimicrobial resistance control 
strategies. These case studies illustrate the substantial 
advantages provided by bioinformatics and machine 
learning methods in antibiotic discovery and resistance 
management, offering hope for the development of 
more effective antibiotic therapies in the future.

Trends and Challenges

The applications of bioinformatics and machine 
learning methods in antibiotic discovery and resistance 
management offer great potential but also bring 
various challenges and ethical issues. Chief among 
these challenges is the processing and integration of 
large and heterogeneous datasets. While integrating 
genomic data enables a better understanding of complex 
biological systems, problems such as data quality and 
standardization remain significant obstacles (de la 
Lastra et al., 2024). Moreover, the interpretability 
and explainability of machine learning models are 
critically important, especially in clinical applications. 
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In this context, Rudin (2019) addressed the lack of 
transparency in AI models used for high-stakes decisions, 
emphasizing that transparent and interpretable models 
should be preferred. Future research directions include 
single-cell genomic analyses and AI-assisted drug 
design. For example, Zhavoronkov et al. (2019) used 
generative tensorial reinforcement learning (GENTRL) 
to design novel drug-like molecules and demonstrated 
that this approach is much faster and more effective than 
traditional methods. From an ethical and legal standpoint, 
the privacy and security of personal genomic data are 
major concerns. Mittos et al. (2019) discussed ethical 
issues and legal regulations related to the use of genomic 
data, drawing attention to the difficulties of balancing 
data sharing with privacy. Furthermore, the regulation 
of AI-assisted antibiotic discovery and its application 
poses new challenges for the pharmaceutical industry 
and healthcare systems. In light of these developments, 
it is evident that the effective use of bioinformatics and 
machine learning methods in antibiotic discovery and 
resistance management will require interdisciplinary 
collaboration, the establishment of ethical standards, 
and continuous technological innovation.

CONCLUSION
Antibiotic resistance is one of the most pressing threats 
to global health security, and addressing this challenge 
is critical to safeguarding human health. In this context, 
the opportunities offered by bioinformatics and 
machine learning in the fields of antibiotic discovery 
and resistance management go far beyond traditional 
approaches, representing a paradigm shift. The in-depth 
analysis of genomic and metagenomic data enables the 
identification of antibiotic-producing microorganisms 
and the mapping of resistance genes, with bioinformatics 
tools driving significant advances in these areas. Machine 

learning algorithms contribute by analyzing large 
datasets to predict antibiotic biosynthetic gene clusters 
and rapidly identify potential antibiotic candidates, 
while deep learning techniques greatly accelerate the 
detection of compounds with antibacterial activity 
through molecular structure analysis. Furthermore, the 
integration of virtual screening and high-throughput 
screening methods speeds up the discovery of potential 
active compounds and optimizes the experimental 
validation stage. The identification of antibiotic 
combinations and the prediction of synergistic effects 
make it possible to develop more effective treatment 
strategies against multidrug resistance. At the same 
time, the prediction and monitoring of resistance 
genes provide a proactive and dynamic approach to 
antibiotic resistance management, with the potential to 
shape global health policies. In conclusion, integrating 
bioinformatics and machine learning into antibiotic 
discovery and resistance management is not only 
accelerating research but also reshaping clinical and 
public health strategies against infectious diseases. 
Broader implementation of these approaches will be 
essential for developing new antibiotics, optimizing 
existing therapies, and strengthening global preparedness 
for future health challenges. Achieving this vision will 
require coordinated efforts across technical, regulatory, 
and collaborative domains.
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Otkrivanje novih antibiotika korištenjem bioinformatike i metoda 
mašinskog učenja

SAŽETAK
Otpornost na antibiotike predstavlja ozbiljnu globalnu zdravstvenu prijetnju koja svake godine 
uzrokuje oko 1,27 miliona smrtnih slučajeva, a smatra se da će taj broj do 2050. godine doseći 
10 miliona. Razvoj novih antibiotika je izrazito zahtjevan proces koji obično traje 10-15 godina 
uz investiciju od oko 1,5 milijarde američkih dolara. U ovom procesu genomske i metagenomske 
analize igraju odlučujuću ulogu u otkrivanju genetskog potencijala mikroorganizama koji se ne 
mogu kultivirati, kao i u identificiranju novih mikroorganizama koji proizvode antibiotike. Osim 
toga, modeli dubokog učenja analiziraju molekularne strukture s ciljem identifikacije novih spojeva 
s antibakterijskom aktivnošću, dok virtualne tehnike skrininga analiziraju velike molekularne 
baze podataka s ciljem određivanja potencijalno aktivnih spojeva. Dokazano je da modeli 
razvijeni korištenjem dubokog učenja mogu predvidjeti genske klastere za biosintezu antibiotika 
s preciznošću od preko 90%. Osim ovakvih pristupa, identifikacija antibiotskih kombinacija i 
predviđanje sinergističkih učinaka omogućavaju razvoj efektivnijih terapijskih strategija u borbi 
protiv multirezistentnosti na lijekove. Ovakve metode doprinose razvoju proaktivnih pristupa 
upravljanju antibiotskom rezistencijom i optimiziranju otkrivanja novih antibiotika i učinkovitijoj 
primjeni postojećih. Ovaj rad ispituje otkrivanje novih antibiotika korištenjem bioinformatike i 
metoda mašinskog učenja. 

Ključne riječi: Bioinformatika, mašinsko učenje, otkrivanje novih antibiotika


